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Abstract An explicit analytical solution to the problem of steady Darcian seepage into a constant-head subsurface
gallery (a straight line segment) placed in a homogeneous rock under a leaky layer of silt deposited in a reservoir
is obtained. The third-type boundary condition (linear relation between the head and normal component of the
Darcian velocity) along the interface between sediments and rock is tackled by the Verigin function, which satisfies
the mixed boundary-value problem conditions in a domain obtained by a conformal mapping of the physical plane
(quadrangle) onto an auxiliary plane. This function has three integrable singularities and, unlike Verigin’s attempt
to construct the second conformal mapping, we use a Signorini-type integral representation. The gallery flow rate is
plotted as a function of the gallery size, location under the leaky layer, and the leakage factor, which combines the
hydraulic conductivities of the rock and silt, the difference in hydraulic head between the reservoir bottom above
the leaky layer and the gallery contour and the silt thickness.

Keywords Analytic functions · Boundary-value problems · Leaky layer · Seepage

1 Introduction

Leaky porous systems are characterised by a layer (AB in Fig. 1) of thickness d made of a low-permeable material
(sediment cake) of conductivity k0 sandwiched between two hydrostratigraphic units (called aquifers in groundwa-
ter hydrology and commingled formations in petroleum engineering) or a free-body reservoir and the parent rock
(soil) of a much higher thickness and conductivity k1. Below we assume that a reservoir with a constant water level
hw is located above a leaky layer, the lower boundary of which coincides with the abscissa axis of a Cartesian
system of coordinates Cxy. Along y < 0 we have a region of homogeneous rock.

The leaky layer in Fig. 1 can be a clay liner designed for prevention of seepage of hazardous liquids from a
reservoir or landfill [1, Sect. 1.2.1, Figs. 1.2–1.3]. As the liner longevity is limited, horizontal backup drains are
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Fig. 1 Vertical cross-section of an aquifer drained by a vertical gallery F DG; leaky layer AC E B separates the drained aquifer from
an upper aquifer (reservoir) with static groundwater (free water body)

installed under the liner. The drains intercept a potential leachate and divert it to special shallow treatment tanks
such that contamination of groundwater is prevented. The cake layer in Fig. 1 can build up naturally by deposition of
suspended sediments (silt). Geologically, fine sediments sandwiched between two coarser porous massifs are called
leaky layers (LL) or aquitards [2, Sect. 14, Fig. 2.63]. Formation of LL in geotechnical engineering by clogging of
reservoir beds causes a major impediment to infiltration from artificial recharge units (e.g. ponds or channels [3]).
It has been recently proposed [4] to install horizontal drains under LL and by this means to intensify seepage into
the aquifer.

In this paper we study seepage from the reservoir through AB into a gallery F DG placed at a depth of t and
having a length of s − t . The gallery is a gravel-filled drain whose x-dimension (the size FG in Fig. 1) is negligible
compared with s − t (see [5] where the design of galleries is explained). Along F DG, which is modeled mathe-
matically by a cut in the physical plane, the hydraulic head is constant (Fig. 1) because the percolated water fills in
the whole gallery. Similar equipotential slot and chimney drains are used in agricultural engineering [6, Chap. 5,
Fig. 124] and behind clay cores of earth-, rock-filled dams for phreatic surface control [7, Sect. 5.5–5.6], in perme-
able foundations beneath concrete dams for reduction of pressure and dam uplift [8] and to remedy contaminated
aquifers by air-venting systems for removal of the fluids moved through porous zones targeted by clean-up [9].

Most often LL are modeled by the Dupuit–Forchheimer (DF) approximation, which assumes that the inflow or
outflow into the aquifer through LL is accounted by an additional term in the governing equation, which deals with
a vertically averaged hydraulic head in the aquifer [10], [6, pp. 398–402], [2, pp. 160–163]. In terms of this sim-
plification, the 2-D Laplace equation becomes an ODE. This “hydraulic” model obliterates the real flow topology,
which can be quite puzzling [11]. The DF model is not applicable to the case of Fig. 1 because the gallery drains
water from all directions [12].

Verigin [13] pioneered in studying seepage bounded by LL with the framework of a genuinely 2-D model, which
seeks a harmonic function in the aquifer (y < 0 in Fig. 1) with the third-type condition (TTC) along y = 0. TTC,
as examined in [12], appears as a limit d → 0 from the full refraction problem when two harmonic fields (in the
aquifer and in the cake, 0 < y < d) are conjugated. A mathematically equivalent relation between temperature
and normal heat flux is also called the Newton or Robin condition in heat-transfer problems where a thin boundary
layer between a solid body and ambient cooling or heating fluid is an analogue of the LL in Fig. 1 [14]. The bound-
ary-value problems with TTC were solved in [11,15,16] for groundwater applications and in [17,18] for steady
heat transfer.

Verigin [13] suggested a new holomorphic function, which brings some TTC-bordered seepage domains into the
realm of conformal mappings. Verigin’s solution for a limiting case of s → t when the gallery degenerates into a
point sink was later cited in [6, pp. 355–357]. VanDerVeer [19,20] rediscovered the Verigin function when studying
multiple sinks in an aquifer with a step-wise constant head on the top (the so-called polder consisting of a dike
maintaining a difference in water levels on its two sides) and a lower boundary consisting of a LL. Anderson [12]
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Fig. 2 (a) Complex potential plane, (b) Verigin’s function domain, (c) auxiliary half-plane

warned that the attempts to juxtapose a LL and horizontal no-flow boundaries in [19–21] are not warranted. Indeed,
the Verigin function [13] is not able to map straight bedrock boundaries to straight lines in the corresponding domain
(or equivalently, in the method of images used in [12] the singularities mirrored about a straight line do not preserve
TTC along LL).

Our revision of the Verigin solution [13] to the problem sketched in Fig. 1 is based on a trick that circumvents the
conformal mapping of the Verigin function domain [13]. Instead of a cumbersome calculation of conformal-map-
ping parameters associated with the Schwarz–Christoffel formula we use the most general integral representation
[22] of the Signorini-type mixed boundary-value problem, which effectively obviates the very construction of the
Verigin domain. This technique is similar to Hamel’s transformation and the integrals that often appear there (see
e.g. [23, pp. 303–318]).

New analytical tools, viz. computer-algebra packages [24] and recent theoretical developments in obtaining
integral representations to boundary-value problems, which were not available to Verigin, motivate our intention to
re-use the old function and to complete the problem attempted by Verigin. Our main objective is to find the seepage
rate of the gallery as a function of its size, location and leakage factor.

2 Solution of the boundary-value problem

We introduce the complex physical plane z = x + i y. A vertical slit gallery for which the apex and bottom have the
ordinates y = −t and y = −s, t < s, correspondingly, is kept under constant-head conditions and we count this
hydraulic head h(x, y) from F DG. We assume that in the reservoir the water level is constant and equals H > 0.
We assume (as in [13]) that the gallery is the only draining object, so that C F and EG are streamlines. Far from
the gallery, water, which saturates completely the half-plane y < 0 (seepage domain Gz) in Fig. 1, is static. Owing
to seepage, the hydraulic head along y = 0 drops from H at A and B to a certain unknown value at C .

Because Gz is symmetric about Cy, we make a vertical cut from point C to D such that the pairs of points (C, E)
and (F,G), although coinciding in Gz (Fig. 1), are different in other characteristic domains shown in Fig. 2.

The Darcian velocity vector �V = −k0∇h and complex potential w(z) = φ(x, y) + iψ(x, y), φ = −k0h are
introduced in a standard manner [6, Chap. 2].

Due to the symmetry of Gz, the velocity vector �V (z) = (Vx (x, y), Vy(x, y)) has to satisfy the symmetry con-

dition �V (−z) ≡ − �V (z). Correspondingly, the complex potential obeys the identity w(−z) ≡ w(z). The stream
function ψ(x, 0) is constant along the streamlines C F and EG and the difference in value is equal to the discharge
extracted by the drain 2q, which is to be found. We assume ψ = ±q along C F and EG, respectively, i.e., in the
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w-plane (Fig. 2a) these two lines (identical in the z-plane) are represented by two different sides of the domain Gw

corresponding to Gz . The reference level for ψ is the streamline D A(B), which in Fig. 1 is shown as a dashed ray.
We note that the shape of the curve C AB E in Fig. 2a is unknown but the potential at point A(B) is −k0 H .

The conformal mapping of the quadrangle Gz onto the upper half-plane ξ>0 (Im(ζ ) > 0) of an auxiliary
complex variable ζ = ξ + i η (Fig. 2c) is given by

z(ζ ) = −s
√
ζ 2 − 1, (1)

where the branch of the root
√
ζ 2 − 1 is fixed to be positive at ζ = ξ > 1. The coordinate f of point F is expressed

from (1) at z( f ) = z(− f ) = −i t as

f =
√

1 − (t/s)2. (2)

The leakage condition along AC(E)B reads Vy(x, 0) = −k1[H − h(x, 0)]/d or

φ′
y(x, 0) = αφ(x, 0)+ β at −∞ < x < ∞,

where β = −k1 H/d and α = −k1/(dk0). Correspondingly, the Verigin function [13] is defined as

R(z) = ν(x, y)+ iµ(x, y) = αw(z)− iw′(z)+ β, (3)

such that along LL ν(x, 0) = 0. Clearly, R(z) is holomorphic in Gz , except at the singular points.
The boundary conditions for w(z) and w′(z) = Vx (x, y)− i Vy(x, y) in Gz are

φ(0, y) = 0, Vy(0, y) = 0 along F DG,
ψ(0, y) = q, Vx (0, y) = 0 along C F,
ψ(0, y) = −q, Vx (0, y) = 0 along EG,
∂φ(x, 0)

∂y
= αφ(x, 0)+ β along AC(E)B.

(4)

We emphasize that the boundary conditions along the gallery contour in [25, e.g., p. 247], or well screen (gravel
pack) in [11] were set not as in our (4) (i.e., constant head in groundwater problems or constant pressure in petro-
leum engineering) but as a linear sink of constant intensity. This is a usual “semi-inverse” trick when the flow
net generated by the sink (combination of sinks) is obtained from the solution and isopotential (isobaric) lines or
surfaces are a posteriori related to a physically real constant head (pressure) contour. In other words, the distributed
sink approximation specifies the flow rate of the gallery (well) and determines a constant hydraulic head boundary
generating this rate. A detailed analysis revealed that this method has serious limitations when applied to the Muscat
[25, pp. 246–250] gallery problem (the details are available from the authors upon request). Our condition along
F DG in (4) is direct, physically sound and determines the flow rate as a part of the solution.

In accordance with (4) the Verigin function (3) satisfies the following boundary condition in the ζ -plane

Re (R(ξ)) = ν(ξ) = β, |ξ | ≤ f,
Im (R(ξ)) = µ(ξ) = αq, f ≤ ξ ≤ 1,
Im (R(ξ)) = µ(ξ) = −αq, −1 ≤ ξ ≤ − f,
Re (R(ξ)) = ν(ξ) = 0, |ξ | ≥ 1.

(5)

The solution of the mixed problem (5) should be searched for in the class of functions finite at points ζ = ±1 and
infinite (but integrable) at points ζ = ± f and ζ = 0.

We introduce, following [22], a new function r(ζ ) such that

R(ζ ) = R0(ζ )r(ζ ), (6)

where

R0(ζ ) = 1

ζ

√
ζ 2 − 1

ζ 2 − f 2 . (7)
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This representation of R as a product of the elementary function (7) and a new unknown function, r(ζ ), transforms
the original mixed boundary-value problem (5) to a simpler Schwarz one.

The branch of R0 is fixed in Im(ζ ) > 0 by the condition R0(ξ) > 0 (arg(R0(ξ)) = 0) at ξ > 1. For this aim, we
select arg(ξ) = arg(ξ ±1) = arg(ξ ± f ) = 0 at ξ > 1. The arg(R0(ξ)) has the following jumps along the real axes:
π/2 at ξ = ±1, −π/2 at ξ = ± f , and −π at ξ = 0. Accordingly, for ξ ∈ R we have: R0(ξ) = sign (ξ) |R0(ξ)|
if |ξ | > 1 or |ξ | < f, R0(ξ) = i |R0(ξ)| for f < |ξ | < 1, and from (5) and (6) we derive

Re(r(ξ)) =
⎧
⎨

⎩

0, |ξ | > 1,
αq sign (ξ)/|R0(ξ)|, f < |ξ | < 1,
β/R0(ξ), |ξ | < f.

(8)

The function r(ζ ) is integrable at the points ξ = ±1, 0 and finite at ξ = ± f and ξ = ∞. The solution of the
Schwarz problem (8) in this class of functions is expressed through a Cauchy type integral [22]. We note that in [22]
an arbitrary mixed boundary-value problem (with an arbitrary index as compared with special cases of the index
value, [26, Chap. VI, pp. 472–474] is reduced to a Schwarz integral. Eventually, from (6) the original problem (5)
has the following solution

R(ζ ) = R0(ζ )

[
β

iπ

∫ f

− f

dτ

(τ − ζ )R0(τ )
+ αq

iπ

∫

(−1,− f )∪ ( f,1)

sign (τ ) dτ

(τ − ζ )|R0(τ )| + ico

]
, (9)

where the parameter f is defined in (2) and the constants c0 and q are to be found. In order to determine these con-
stants we have to evaluate the limit values, R+(ξ), of the function (9) when ζ → ξ ∈ R from the upper half-plane.
According to the Plemelj–Sokhotskii formula [26, Chap. I, pp. 37–39] we get:

R+(ξ) = R(ξ)+ β, |ξ | < f ; R+(ξ) = R(ξ)+ iαq, f < |ξ | < 1, (10)

where R(ξ) is a principal value of the function (9) at the point ξ ∈ R. In particular, R+(ξ) = R(ξ) for |ξ | > 1.
Verigin [13] constructed the domain G R based on (4) as a heptagon (Fig. 2b) where H1 and H2 are two points

on the gallery, which correspond to two end points of the semi-infinite cuts in Fig. 2b (we note that Verigin’s y-axis
was oriented vertically downward).

From the definition (3) of R(z) we can write:

dw

dζ
+ i α

dz

dζ
w = i

dz

dζ
[R(ζ )− β] (11)

or
dw

dζ
+ P1(ζ )w = P2(ζ ), (12)

where

P1(ζ ) = i α
dz

dζ
, P2(ζ ) = i

dz

dζ
(R(ζ )− β)

and dz/dζ is expressed from (1).
Thus, Eq. 12 is a linear first-order ODE in the complex plane. The solution to the Cauchy problem w(0) = 0 for

(12) is:

w(ζ ) = i e−i αz(ζ )
∫ ζ

0
ei αz(ζ )z′(ζ )(R(ζ )− β)dζ. (13)

Due to the representation (13) and the evident equality

β

∫ ζ

0
ei αz(ζ )z′(ζ )dζ = −i k0 H(e−iαs

√
ζ 2−1 − eαs),

the condition w(∞) = −k0 H (Fig. 2a) is reduced to
∫ ∞

0
ei αz(ζ )z′(ζ )R(ζ )dζ = i k0 Heαs . (14)
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The condition w( f ) = iq (Fig. 2a) can be converted to
∫ f

0
ei αz(τ )z′(τ )R(τ ) dτ + qeαt = 0. (15)

Equations (14) and (15) constitute a system of linear equations with respect to c0 and q, which are linked through
(9). The simplest form of this system can be deduced using the following properties. The fixed branches of (1), (7)
both satisfy the symmetry identities

z(−ζ ) ≡ −z(ζ ), R0(−ζ ) ≡ −R0(ζ ).

and therefore z′(−ζ ) = z′(ζ ). Consequently, for the functions (9), (13) the following identities are true:

R(−ζ ) ≡ R(ζ ), w(−ζ ) ≡ w(ζ ).

Taking into account (7) we decouple the following singular Cauchy-type integral into a regular (at ξ /∈ (−1,− f ))
integral and an integral which is expressed explicitly by an elementary function:

αq

iπ

∫

(−1,− f )∪ ( f,1)

sign (τ ) dτ

(τ − ζ )|R0(τ )| = αq

π

∫

(−1,− f )∪ ( f,1)

dτ

(τ − ζ )R0(τ )

= iαq [1/R0(ζ )− ζ ] − 2αq

π

∫ − f

−1

dτ

(τ − ζ )R0(τ )
.

We use the last integral, the listed symmetry identities, (9) and (10) and write the linear system:

a11C0 + a12 Q = b1, a21C0 + a22 Q = b2. (16)

These expressions involve two dimensionless quantities Q = q/(k0 H) and C0 = c0/k0. The dimensionless co-
efficients in (16) are

a12 = a
∫ ∞

1
K (ξ)

(
R−1

0 (ξ)− I1(ξ)
)

dξ − a
∫ 1

f
K (ξ)I1(ξ)dξ,

a11 =
∫ ∞

f
K (ξ)dξ, a21 =

∫ f

0
K (ξ)dξ, a22 = −a

∫ f

0
K (ξ)I1(ξ)dξ + eaS/S,

b1 = a
∫ ∞

f
K (ξ)I2(ξ)dξ − eaS

√
1− f 2

/S, b2 = a
∫ f

0
K (ξ)I2(ξ)dξ,

(17)

where

K (ξ) =
{

eaS
√

1−ξ2
/
√|ξ2 − f 2|, 0 < ξ < 1,

cos(aS
√
ξ2 − 1)/

√
ξ2 − f 2, ξ > 1,

(18)

I1(ξ) = ξ + 2

π

∫ − f

−1

τ
√
τ 2 − f 2dτ√

1 − τ 2(τ − ξ)
, I2(ξ) = 2

π

∫ f

0

τ 2
√

f 2 − τ 2 dτ√
1 − τ 2(τ 2 − ξ2)

, (19)

and

T = t/H, a = αH = β

k0
= −k1 H

k0d
, S = s/H. (20)

We shall call a in (20) the leakage factor. All integrals in (17) and (19) exist either in the sense of a principal
value or as ordinary improper integrals, i.e., the appropriate isolation of singularities is necessary (see [27] for the
details). The integrand of a12 has a zero of the second order at infinity according to the representations (18) and
(19) and asymptotics:

1

R0(ζ )
= −ζ + 1 − f 2

2ζ
+ 3 − 2 f 2 + f 4

8ζ 3 + O(ζ−5)

as ζ → ∞ and hence the improper integral in a12 of (17) exists.
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We used the NIntegrate and CauchyPrincipalValue routines of Mathematica [24, pp. 686–689] to
carry out the integration.

Upon calculating of c0 and q, we use (13), (9) and reconstruct the dimensionless complex potential W (ξ) =
w(ξ)/(k0 H) = �(ξ)+ i(ξ) at ζ = ξ > 1:

W (ξ) = i Q − 1 + eiω(ξ)
{

H0 − S
∫ ξ

1
[K (τ )− i K1(τ )]I (τ ) dτ

}
, (21)

where

I (ξ) = aQ I1(ξ)+ aI2(ξ)− C0, K1(ξ) = (ξ2 − f 2)−1/2 sinω(ξ), (22)

ω(ξ) = aS
√
ξ2 − 1, H0 = eaS

√
1− f 2 − S

∫ 1

f
K (τ )I (τ ) dτ. (23)

Finally, using (19) and (22), we obtain for the real and imaginary parts in (21):

�(ξ) = −1 + cosω(ξ)[H0 − S
∫ ξ

1
K (τ )I (τ )dτ ] − S sinω(ξ)

∫ ξ

1
K1(τ )I (τ )dτ,

(ξ) = Q + sinω(ξ)[H0 − S
∫ ξ

1
K (τ )I (τ )dτ ] + S cosω(ξ)

∫ ξ

1
K1(τ )I (τ )dτ.

(24)

A mathematically equivalent problem in heat transfer was solved for an array of semi-infinite galleries (s − t in
Fig. 1 infinite but t finite) [28]. In the particular case of one gallery the solution from [28] is reduced to the Verigin
limit (s → ∞). In our notation this limit from [28], written in terms of the velocity potential along AB, reads:

�(X) = 2

π

[∫ ∞

X

sin a(X − u)du√
u2 + T 2

− 1

T

K0(−aT )

K1(−aT )

∫ ∞

X
cos a(u − X)

(
1 − u√

u2 + T 2

)
du

]
− 1, (25)

where X = x/H and K0 and K1 are Macdonald functions.

3 Results and discussion

Figure 3a shows the dimensionless inflow half-rate Q(T ) calculated from (16) for a = −5 × 10−2 and for the
following depths of point D in Fig. 1: S = 0.1, 0.2, 0.3 (curves 1–3, correspondingly). Figure 3b shows the same
sequence of curves but a = −5 × 10−3. As is obvious from the curves and from the comparison theorems from
[29, Sects. 1.1 and 1.2], an increase of H, t, and s increases the flow rate. From Fig. 3a, b we see that Q is most
sensitive to the gallery size, S − T , for small S − T .

Figure 4 shows Q as a function of the leakage factor for S = 0.2 and T = 0.05, 0.1, 0.15 (curves 1–3,
correspondingly). From this figure we see that the effect of the leakage factor a on Q is most pronounced for small
|a|. This implies that, if maximal infiltration intensity from a reservoir bottom is targeted, even a thin sediment cake
(d in (20) defining a) should be scraped.

In Fig. 5 we show �C (T ) (curve 1) calculated from (24) for S = 1 and a = −1. Curve 2 shows the solution
�C S(T ) calculated from (25) for the same a. At small depth of the gallery, T , the two curves practically coincide,
i.e., our solution fits well the limiting (S = ∞) case from (25). This implies, in particular, that our finite-length
gallery is almost equivalent (in the sense of head depression) to the semi-infinite gallery from (25). Therefore, the
excessive size of the gallery adds little to the seepage rate. As T → 1, we have S − T → 0 in our solution and
�C → −1, i.e., flow vanishes and Q → 0. We note that H is constant in this limit while the point sink requires
� → −∞ at the singularity.
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Fig. 3 Seepage flow half-rate Q as a function of T, S = 0.1, 0.2, 0.3 (curves 1–3, correspondingly), (a) a = −5 × 10−2, (b)
a = −5 × 10−3
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Fig. 5 Velocity potential at point C as a function of T for a =
−1, our solution with S = 1 (curve 1) and Strakhov’s solution
with S = ∞ (curve 2)

4 Concluding remarks

The third-type boundary condition is very common in heat-transfer models, where it describes a locally 1-D
Fourier-law heat flux to/from a flowing constant-temperature gas or liquid from/to a non-isothermic solid body.
Subject to this condition, 2- and 3-D steady (the Laplace equation) and transient (the diffusion equation) prob-
lems can be effectively solved analytically in domains (rectangle, cylinder, and sphere) where the variables separate
[30, Chaps. 5,7,9]. In mathematically equivalent identical seepage problems [2, Sects. 14–15], this condition
(a local 1-D Darcy law) is relatively rare because it models fluid leakage through a thin low-permeable LL. In
physical domains with no separation of variables in PDEs describing heat transfer or seepage, conformal mappings
do not work, if the third-type condition is involved, because a characteristic domain (complex potential, hodograph,
Zhukovskii function), which can be easily constructed for the Dirichlet (first) or Neuman (second) boundary con-
ditions, is not a standard polygon.

The function discovered in [13] “straightens” the polygon boundary, which corresponds to the LL, and therefore
the conformal mapping can, in principle, be constructed. This paper exploits the function from [13] but the tech-
nique of obtaining this function is different from the approach suggested in [13]: instead of the Schwarz–Christoffel
formula for the mapping we solved a mixed boundary-value problem, i.e., one where the real and imaginary parts
of a holomorphic function are specified intermittently on different segments of an auxiliary half-plane.

It is well-known that for polygonal domains in the characteristic (in our case, Verigin) plane one has two options
to express a holomorphic function through an auxiliary variable: either the Schwarz–Christoffel formula or an
integral representation of the general Hilbert problem [6, pp. 206–208]. We advocate the second approach, which
was utilisied in [27,31,32] for different porous–media flows. The integral representations of holomorphic functions,
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which satisfy a mixed problem, are used after Signorini and Keldysh–Sedov [26, Chap. VI, pp. 472–474] in various
applications of continuum mechanics, but the most general case of the integral solution has been obtained in [22],
where the reconstructed function had arbitrary integrable singularities.

Our final solution, i.e., the complex physical coordinate and the Verigin function, expressed through an auxiliary
variable, makes possible—through computation of singular, proper and improper integrals—the analysis of the
seepage flow rate as a function of physical parameters of the problem, viz. the drain size, depth, LL thickness,
conductivities of the bulk aquifer and the sediments and the difference in the hydraulic head between the drain and
reservoir, from which fluid seeps into the drain. All these parameters have equivalents in heat conduction, where
the gallery corresponds to a heat-generating device and LL is a cooling surface [28]. Our solution can also be used
in estimates of the efficiency of the shut-off of oil wells drilled in complex geological conditions of Oman where
thin shale layers adjacent to horizontal wells obstruct water flooding. Therefore, if we turn Fig. 1 upside down, then
CFDGE can be viewed as a part of a gallery blocked (e.g. by tamponage, cementing, packers, elastomers, etc., see
[33] for details) from water flooding. LL impedes upconing and early breakthrough of water from the oil–water
contact to a horizontal well beneath CFDGE.
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